Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Front Pediatr ; 10: 1012816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304528

RESUMO

In recent years, new therapies for the treatment of rare pediatric bone disorders have emerged, guided by an increasing understanding of the genetic and molecular etiology of these diseases. Herein, we review three such disorders, impacted by debilitating deficits in bone mineralization or cartilage ossification, as well as the novel disease-modifying drugs that are now available to treat these conditions. Specifically, we discuss asfotase alfa, burosumab-twza, and vosoritide, for the treatment of hypophosphatasia, X-linked hypophosphatemia and achondroplasia, respectively. For each skeletal disorder, an overview of the clinical phenotype and natural history of disease is provided, along with a discussion of the clinical pharmacology, mechanism of action and FDA indication for the relevant medication. In each case, a brief review of clinical trial data supporting drug development for each medication is provided. Additionally, guidance as to drug dosing and long-term monitoring of adverse events and pediatric efficacy is presented, to aid the clinician seeking to utilize these novel therapies in their practice, or to become familiar with the healthcare expectations for children receiving these medications through specialized multidisciplinary clinics. The availability of these targeted therapies now significantly augments treatment options for conditions in which past therapy has relied upon less specific, symptomatic medical and orthopedic care.

2.
Acta Histochem ; 124(7): 151940, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35969910

RESUMO

A primary underlying defect makes ß-cells "susceptible" to no longer compensate for the peripheral insulin resistance and to trigger the onset of type 2 diabetes (T2D). New evidence suggests that in T2D, ß-cells are not destroyed but experience a loss of identity, reverting to a progenitor-like state and largely losing the ability to sense glucose and produce insulin. We assessed (using fluorescence microscopy and histomorphometry correlated with the glycaemic status) the main ß-cell identity modifications as diabetes progresses in the TallyHo/JngJ (TH) male mice, a polygenic model of spontaneous T2D, akin to the human phenotype. We found that: 1) conversion to overt diabetes is paralleled by a progressive reduction of insulin-expressing cells and expansion of a glucagon-positive population, together with alteration of islet size and shape; 2) the ß-cell population is highly heterogeneous in terms of insulin content and specific transcription factors like PDX1 and NKX6.1, that are gradually lost during diabetes progression; 3) GLUT2 expression is altered early and strongly reduced at late stages of diabetes; 4) an endocrine developmental program dependent on NGN3-expressing progenitors is revived when hyperglycaemia becomes severe; and 5) the re-expression of the EMT-associated factor vimentin occurs as diabetes worsens, representing a possible regenerative response to ß-cell loss. Based on these results, we formulated additional hypotheses for the ß-cell identity alteration in the TH model, together with several limitations of the study, that constitute future research directions.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/genética , Glucagon/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Fatores de Transcrição/metabolismo , Vimentina/metabolismo
3.
Curr Opin Endocrinol Diabetes Obes ; 29(4): 318-325, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35749285

RESUMO

PURPOSE OF REVIEW: In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models. RECENT FINDINGS: Humans with T1D have decreased bone mineral density and an increased risk for fragility fracture. Mouse models of insulin-deficiency diabetes (hereafter denoted as T1D) in many ways recapitulate these skeletal deficits. Utilizing techniques of microcomputed tomography, bone histomorphometry, biomechanical testing and fracture modeling, bone biomarker analysis, and Raman spectroscopy, mouse models of T1D have demonstrated abnormalities in bone mineralization, bone microarchitecture, osteoblast function, abnormal bone turnover, and diminished biomechanical properties of bone. SUMMARY: Mouse models have provided significant insights into the underlying mechanisms involved in the abnormalities of bone observed in T1D in humans. These translational models have provided targets and pathways that may be modifiable to prevent skeletal complications of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Fraturas Ósseas , Animais , Densidade Óssea , Remodelação Óssea , Diabetes Mellitus Tipo 1/complicações , Fraturas Ósseas/etiologia , Humanos , Insulina , Camundongos , Microtomografia por Raio-X
4.
Bone ; 152: 116060, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34144233

RESUMO

The RASopathies comprise an ever-growing number of clinical syndromes resulting from germline mutations in components of the RAS/MAPK signaling pathway. While multiple organs and tissues may be affected by these mutations, this review will focus on how these mutations specifically impact the musculoskeletal system. Herein, we review the genetics and musculoskeletal phenotypes of these syndromes in humans. We discuss how mutations in the RASopathy syndromes have been studied in translational mouse models. Finally, we discuss how signaling molecules within the RAS/MAPK pathway are involved in normal and abnormal bone biology in the context of osteoblasts, osteoclasts and chondrocytes.


Assuntos
Síndrome de Noonan , Proteínas ras , Humanos , Mutação , Fenótipo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Cell Tissue Res ; 384(2): 527-543, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33409652

RESUMO

Inhibitors of sodium/glucose co-transporter 2 (SGLT2) are currently in clinical use for type 2 diabetes (T2D) treatment due to their anti-hyperglycemic effect exerted by the inhibition of glucose reabsorption in the kidney. Inhibition of SGLT2 is associated with improvement of renal outcomes in chronic kidney disease associated with T2D. Our study aimed to describe the renal-specific phenotypic consequences of the SGLT2-loss of function "Jimbee" mutation within the Slc5a2 mouse gene in a non-diabetic/non-obese background. The Jimbee mice displayed reduced body weight, glucosuria, polyuria, polydipsia, and hyperphagia but were normoglycemic, with no signs of baseline insulin resistance or renal dysfunction. Histomorphological analysis of the kidneys revealed a normal architecture and morphology of the renal cortex, but shrinkage of the glomerular and tubular apparatus, including Bowman's space, glomerular tuft, mesangial matrix fraction, and proximal convoluted tubule (PCT). Immunofluorescent analysis of renal sections showed that SGLT2 was absent from the apical membrane of PCT of the Jimbee mice but remnant positive vesicles were detected within the cytosol or at the perinuclear interface. Renal localization and abundance of GLUT1, GLUT2, and SGLT1 were unchanged in the Jimbee genotype. Intriguingly, the mutation did not induce hepatic gluconeogenic gene expression in overnight fasted mice despite a high glucose excretion rate. The Jimbee phenotype is remarkably similar to humans with SLC5A2 mutations and provides a useful model for the study of SGLT2-loss of function effects on renal architecture and physiology, as well as for identifying possible novel roles for the kidneys in glucose homeostasis and metabolic reprogramming.


Assuntos
Glucose/metabolismo , Rim/fisiologia , Mutação com Perda de Função , Transportador 2 de Glucose-Sódio/genética , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Homeostase , Humanos , Rim/citologia , Rim/metabolismo , Masculino , Camundongos , Transportador 2 de Glucose-Sódio/metabolismo
6.
Bone ; 141: 115625, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32890778

RESUMO

Higher fracture risk in type 2 diabetes (T2D) is attributed to disease-specific deficits in micro-structural and material properties of bone, although the primary cause is not yet established. The TallyHO (TH) mouse is a polygenic model of early-onset T2D and obesity analogous to adolescent-onset T2D in humans. Due to incomplete penetrance of the phenotype, ~25% of male TH mice never develop hyperglycemia, providing a strain-matched, non-diabetic control. Utilizing this model of T2D, we examined the impact of glucose-lowering therapy with canagliflozin (CANA) on diabetic bone. Male TH mice with or without hyperglycemia (High BG, Low BG) were monitored from ~8 to 20 weeks of age, and compared to age-matched, male, TH mice treated with CANA from ~8 to 20 weeks of age. At 20 weeks, untreated TH mice with high BG [High BG: 687 ± 106 mg/dL] exhibited lower body mass, decrements in cortical bone of the femur (decreased cross-sectional area and thickness; increased porosity) and in trabecular bone of the femur metaphysis and L6 vertebra (decreased bone volume fraction, thickness, and tissue mineral density), as well as decrements in cortical and vertebral bone strength (decreased yield force and ultimate force) when compared to untreated TH mice with low BG [Low BG: 290 ± 98 mg/dL; p < 0.0001]. CANA treatment was metabolically advantageous, normalizing body mass, BG and HbA1c to values comparable to the Low BG group. With drug-induced glycemic improvement, cortical area and thickness were significantly higher in the CANA than in the High BG group, but deficits in strength persisted with lower yield force and yield stress (partially independent of bone geometry) in the CANA group. Additionally, CANA only partially prevented the T2D-related loss in trabecular bone volume fraction. Taken together, these findings suggest that the ability of CANA to lower glucose and normalized glycemic control ameliorates diabetic bone disease but not fully.


Assuntos
Diabetes Mellitus Tipo 2 , Preparações Farmacêuticas , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glicemia , Canagliflozina/farmacologia , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Camundongos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
7.
Sci Rep ; 10(1): 8842, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483283

RESUMO

The relationship between osteoblast-specific insulin signaling, osteocalcin activation and gluco-metabolic homeostasis has proven to be complex and potentially inconsistent across animal-model systems and in humans. Moreover, the impact of postnatally acquired, osteoblast-specific insulin deficiency on the pancreas-to-skeleton-to-pancreas circuit has not been studied. To explore this relationship, we created a model of postnatal elimination of insulin signaling in osteoprogenitors. Osteoprogenitor-selective ablation of the insulin receptor was induced after ~10 weeks of age in IRl°x/lox/Osx-Cre+/- genotypic male and female mice (designated postnatal-OIRKO). At ~21 weeks of age, mice were then phenotypically and metabolically characterized. Postnatal-OIRKO mice demonstrated a significant reduction in circulating concentrations of undercarboxylated osteocalcin (ucOC), in both males and females compared with control littermates. However, no differences were observed between postnatal-OIRKO and control mice in: body composition (lean or fat mass); fasting serum insulin; HbA1c; glucose dynamics during glucose tolerance testing; or in pancreatic islet area or islet morphology, demonstrating that while ucOC is impacted by insulin signaling in osteoprogenitors, there appears to be little to no relationship between osteocalcin, or its derivative (ucOC), and glucose homeostasis in this model.


Assuntos
Doenças Metabólicas/patologia , Receptor de Insulina/metabolismo , Animais , Composição Corporal , Peso Corporal , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/análise , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteocalcina/genética , Osteocalcina/metabolismo , Fenótipo , Receptor de Insulina/deficiência , Receptor de Insulina/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
8.
Bone ; 133: 115254, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991250

RESUMO

Selective sodium-dependent glucose co-transporter 2 inhibitors (SGLT2Is) are oral hypoglycemic medications utilized increasingly in the medical management of hyperglycemia among persons with type 2 diabetes (T2D). Despite favorable effects on cardiovascular events, specific SGLT2Is have been associated with an increased risk for atypical fracture and amputation in subgroups of the T2D population, a population that already has a higher risk for typical fragility fractures than the general population. To better understand the effect of SGLT2 blockade on skeletal integrity, independent of diabetes and its co-morbidities, we utilized the "Jimbee" mouse model of slc5a2 gene mutation to investigate the impact of lifelong SGLT2 loss-of-function on metabolic and skeletal phenotype. Jimbee mice maintained normal glucose homeostasis, but exhibited chronic polyuria, glucosuria and hypercalciuria. The Jimbee mutation negatively impacted appendicular growth of the femur and resulted in lower tissue mineral density of both cortical and trabecular bone of the femur mid-shaft and distal femur metaphysis, respectively. Several components of the Jimbee phenotype were characteristic only of male mice compared with female mice, including reductions: in body weight; in cortical area of the mid-shaft; and in trabecular thickness within the metaphysis. Despite these decrements, the strength of femur diaphysis in bending (cortical bone), which increased with age, and the strength of L6 vertebra in compression (primarily trabecular bone), which decreased with age, were not affected by the mutation. Moreover, the age-related decline in bone toughness was less for Jimbee mice, compared with control mice, such that by 49-50 weeks of age, Jimbee mice had significantly tougher femurs in bending than C57BL/6J mice. These results suggest that chronic blockade of SGLT2 in this model reduces the mineralization of bone but does not reduce its fracture resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Densidade Óssea , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Feminino , Fêmur/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Minerais , Transportador 2 de Glucose-Sódio/genética
9.
Bone ; 130: 115106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689526

RESUMO

Recent clinical studies have revealed that a somatic mutation in MAP2K1, causing constitutive activation of MEK1 in osteogenic cells, occurs in melorheostotic bone disease in humans. We have generated a mouse model which expresses an activated form of MEK1 (MEK1DD) specifically in osteoprogenitors postnatally. The skeletal phenotype of these mice recapitulates many features of melorheostosis observed in humans, including extra-cortical bone formation, abundant osteoid formation, decreased mineral density, and increased porosity. Paradoxically, in both humans and mice, MEK1 activation in osteoprogenitors results in bone that is not structurally compromised, but is hardened and stronger, which would not be predicted based on tissue and matrix properties. Thus, a specific activating mutation in MEK1, expressed only by osteoprogenitors postnatally, can have a significant impact on bone strength through complex alterations in whole bone geometry, bone micro-structure, and bone matrix.


Assuntos
Osso e Ossos , Melorreostose , Animais , Camundongos , Mutação , Osteogênese , Fenótipo
10.
Diabetes Metab Res Rev ; 35(2): e3100, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30467957

RESUMO

Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Sistema Musculoesquelético/efeitos dos fármacos , Humanos
11.
Bone Rep ; 7: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28736738

RESUMO

Those with type 1 diabetes (T1D) are more likely to suffer a fracture than age- and sex-matched individuals without diabetes, despite daily insulin therapy. In rodent studies examining the effect of bone- or glucose-targeting therapies on preventing the T1D-related decrease in bone strength, insulin co-therapy is often not included, despite the known importance of insulin signaling to bone mass accrual. Therefore, working toward a relevant pre-clinical model of diabetic bone disease, we assessed the effect of continuous subcutaneous insulin infusion (CSII) therapy at escalating doses on preserving bone and the effect of delayed CSII on rescuing the T1D-related bone deterioration in an established murine model of T1D. Osmotic minipumps were implanted in male DBA/2 J mice 2 weeks (prevention study) and 6 weeks (rescue study) after the first injection of streptozotocin (STZ) to deliver insulin at 0, 0.0625, 0.125, or 0.25 IU/day (prevention study; n = 4-5 per dose) and 0 or 0.25 IU/day (rescue study; n = 10 per group). CSII lasted 4 weeks in both studies, which also included age-matched, non-diabetic DBA/2 J mice (n = 8-12 per study). As the insulin dose increased, blood glucose decreased, body weight increased, a serum maker of bone resorption decreased, and a serum marker of bone formation increased such that each end-point characteristic was linearly correlated with dose. There were insulin dose-dependent relationships (femur diaphysis) with cross-sectional area of cortical bone and cortical thickness (micro-computed tomography) as well as structural strength (peak force endured by the mid-shaft during three-point bending). Likewise, trabecular bone volume fraction (BV/TV), thickness, and number (distal femur metaphysis) increased as the insulin dose increased. Delayed CSII improved glycated hemoglobin (HbA1c), but blood glucose levels remained relatively high (well above non-diabetic levels). Interestingly, it returned the resorption and formation markers to similar levels as those seen in non-T1D control mice. This apparent return after 4 weeks of CSII translated to a partial rescue of the structural strength of the femur mid-shaft. Delayed CSII also increased Tb.Th to levels seen in non-T1D controls but did not fully restore BV/TV. The use of exogenous insulin should be considered in pre-clinical studies investigating the effect of T1D on bone as insulin therapy maintains bone structure without necessarily lowering glucose below diabetic levels.

12.
Bone ; 94: 141-151, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27989651

RESUMO

Skeletal co-morbidities in type 1 diabetes include an increased risk for fracture and delayed fracture healing, which are intertwined with disease duration and the presence of other diabetic complications. As such, chronic hyperglycemia is undoubtedly a major contributor to these outcomes, despite standard insulin-replacement therapy. Therefore, using the streptozotocin (STZ)-induced model of hypoinsulinemic hyperglycemia in DBA/2J male mice, we compared the effects of two glucose lowering therapies on the fracture resistance of bone and markers of bone turnover. Twelve week-old diabetic (DM) mice were treated for 9weeks with: 1) oral canagliflozin (CANA, dose range ~10-16mg/kg/day), an inhibitor of the renal sodium-dependent glucose co-transporter type 2 (SGLT2); 2) subcutaneous insulin, via minipump (INS, 0.125units/day); 3) co-therapy (CANA+INS); or 4) no treatment (STZ, without therapy). These groups were also compared to non-diabetic control groups. Untreated diabetic mice experienced increased bone resorption and significant deficits in cortical and trabecular bone that contributed to structural weakness of the femur mid-shaft and the lumbar vertebra, as determined by three-point bending and compression tests, respectively. Treatment with either canagliflozin or insulin alone only partially rectified hyperglycemia and the diabetic bone phenotype. However, when used in combination, normalization of glycemic control was achieved, and a prevention of the DM-related deterioration in bone microarchitecture and bone strength occurred, due to additive effects of canagliflozin and insulin. Nevertheless, CANA-treated mice, whether diabetic or non-diabetic, demonstrated an increase in urinary calcium loss; FGF23 was also increased in CANA-treated DM mice. These findings could herald ongoing bone mineral losses following CANA exposure, suggesting that certain CANA-induced skeletal consequences might detract from therapeutic improvements in glycemic control, as they relate to diabetic bone disease.


Assuntos
Doenças Ósseas Metabólicas/tratamento farmacológico , Canagliflozina/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Biomarcadores/metabolismo , Glicemia/metabolismo , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/complicações , Reabsorção Óssea/sangue , Reabsorção Óssea/complicações , Reabsorção Óssea/patologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Canagliflozina/farmacologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Insulina/farmacologia , Modelos Lineares , Masculino , Camundongos Endogâmicos DBA , Fenótipo , Transportador 2 de Glucose-Sódio/metabolismo
14.
Curr Osteoporos Rep ; 14(6): 310-319, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27704393

RESUMO

PURPOSE OF REVIEW: To describe the effects of type 1 diabetes on bone cells. RECENT FINDINGS: Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised. The hyperglycemic and inflammatory environment associated with T1D impacts osteoblasts, osteocytes, and osteoclasts. The mechanisms involved are complex; insulinopenia, pro-inflammatory cytokine production, and alterations in gene expression are a few of the contributing factors leading to poor osteoblast activity and survival and, therefore, poor bone formation. In addition, the observed sclerostin level increase accompanied by decreased osteocyte number and enhanced osteoclast activity in T1D results in uncoupling of bone remodeling. T1D negatively impacts osteoblasts and osteocytes, whereas its effects on osteoclasts are not well characterized, although the limited studies available indicate increased osteoclast activity, favoring bone resorption.


Assuntos
Remodelação Óssea , Diabetes Mellitus Tipo 1/fisiopatologia , Osteoblastos , Osteoclastos , Osteócitos , Animais , Doenças Ósseas Metabólicas/epidemiologia , Reabsorção Óssea , Diabetes Mellitus Tipo 1/epidemiologia , Consolidação da Fratura , Fraturas Ósseas/epidemiologia , Humanos , Osteogênese , Osteoporose/epidemiologia , Fraturas por Osteoporose/epidemiologia
15.
Bone ; 82: 101-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26211996

RESUMO

Persons with type 1 and type 2 diabetes have increased fracture risk, attributed to deficits in the microarchitecture and strength of diabetic bone, thought to be mediated, in part, by the consequences of chronic hyperglycemia. Therefore, to examine the effects of a glucose-lowering SGLT2 inhibitor on blood glucose (BG) and bone homeostasis in a model of diabetic bone disease, male DBA/2J mice with or without streptozotocin (STZ)-induced hyperglycemia were fed chow containing the SGLT2 inhibitor, canagliflozin (CANA), or chow without drug, for 10weeks of therapy. Thereafter, serum bone biomarkers were measured, fracture resistance of cortical bone was assessed by µCT analysis and a three-point bending test of the femur, and vertebral bone strength was determined by compression testing. In the femur metaphysis and L6 vertebra, long-term diabetes (DM) induced deficits in trabecular bone microarchitecture. In the femur diaphysis, a decrease in cortical bone area, cortical thickness and minimal moment of inertia occurred in DM (p<0.0001, for all) while cortical porosity was increased (p<0.0001). These DM changes were associated with reduced fracture resistance (decreased material strength and toughness; decreased structural strength and rigidity; p<0.001 for all). Significant increases in PTH (p<0.0001), RatLAPs (p=0.0002), and urine calcium concentration (p<0.0001) were also seen in DM. Canagliflozin treatment improved BG in DM mice by ~35%, but did not improve microarchitectural parameters. Instead, in canagliflozin-treated diabetic mice, a further increase in RatLAPs was evident, possibly suggesting a drug-related intensification of bone resorption. Additionally, detrimental metaphyseal changes were noted in canagliflozin-treated control mice. Hence, diabetic bone disease was not favorably affected by canagliflozin treatment, perhaps due to insufficient glycemic improvement. Instead, in control mice, long-term exposure to SGLT2 inhibition was associated with adverse effects on the trabecular compartment of bone.


Assuntos
Glicemia/efeitos dos fármacos , Doenças Ósseas/tratamento farmacológico , Canagliflozina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glicemia/metabolismo , Doenças Ósseas/metabolismo , Doenças Ósseas/prevenção & controle , Canagliflozina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos DBA , Transportador 2 de Glucose-Sódio/metabolismo
16.
Bone Rep ; 1: 16-19, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25685827

RESUMO

In type 1 diabetes, diabetic bone disease (DBD) is characterized by decreased bone mineral density, a state of low bone turnover and an increased risk of fracture. Animal models of DBD demonstrate that acquired alterations in trabecular and cortical bone microarchitecture contribute to decreased bone strength in diabetes. With anti-collagenolytic and anti-inflammatory properties, tetracycline derivatives may prevent diabetes-related decreases in bone strength. To determine if doxycycline, a tetracycline class antibiotic, can prevent the development of DBD in a model of long-term diabetes, male DBA/2J mice, with or without diabetes, were treated with doxycycline-containing chow for 10 weeks (dose range, 28-92 mg/kg/day). Long-term doxycycline exposure was not deleterious to the microarchitecture or biomechanical properties of healthy bone in male DBA/2J mice. Doxycycline treatment also did not prevent or alleviate the deleterious changes in trabecular microarchitecture, cortical structure, and biomechanical properties of bone induced by chronic diabetes.

17.
J Pediatr Endocrinol Metab ; 27(11-12): 1037-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25210756

RESUMO

Here we report an adolescent male with Cushing's disease secondary to a pituitary adenoma who was admitted with cholestatic hepatitis. A detailed work-up for hepatitis was negative except for a novel heterozygous ABCB4 gene mutation encoding multidrug resistance type III (MDR3) protein. Upon resection of the pituitary adenoma, the hepatic biochemical abnormalities gradually improved. This case highlights that heterozygous ABCB4 defect may represent a genetic predisposition for nongenetic factors such as hormones or other metabolites to decrease normal MDR3 allele expression. It is known to act as a modifier gene and possibly played a role in the development of cholestatic hepatitis and cholelithiasis, in the presence of excess cortisol secondary to Cushing's disease in our patient.


Assuntos
Colestase Intra-Hepática/diagnóstico , Hepatite/diagnóstico , Hipersecreção Hipofisária de ACTH/diagnóstico , Adolescente , Colestase Intra-Hepática/complicações , Colestase Intra-Hepática/genética , Diagnóstico Diferencial , Hepatite/complicações , Hepatite/genética , Humanos , Masculino , Hipersecreção Hipofisária de ACTH/complicações , Hipersecreção Hipofisária de ACTH/genética
18.
J Diabetes Res ; 2014: 703589, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24963495

RESUMO

Type 1 diabetes mellitus (T1D) is associated with decreased bone mineral density, a deficit in bone structure, and subsequently an increased risk of fragility fracture. These clinical observations, paralleled by animal models of T1D, suggest that the insulinopenia of T1D has a deleterious effect on bone. To further examine the action of insulin signaling on bone development, we generated mice with an osteoprogenitor-selective (osterix-Cre) ablation of the insulin receptor (IR), designated OIRKO. OIRKO mice exhibited an 80% decrease in IR in osteoblasts. Prenatal elimination of IR did not affect fetal survival or gross morphology. However, loss of IR in mouse osteoblasts resulted in a postnatal growth-constricted phenotype. By 10-12 weeks of age, femurs of OIRKO mice were more slender, with a thinner diaphyseal cortex and, consequently, a decrease in whole bone strength when subjected to bending. In male mice alone, decreased metaphyseal trabecular bone, with thinner and more rodlike trabeculae, was also observed. OIRKO mice did not, however, exhibit abnormal glucose tolerance. The skeletal phenotype of the OIRKO mouse appeared more severe than that of previously reported bone-specific IR knockdown models, and confirms that insulin receptor expression in osteoblasts is critically important for proper bone development and maintenance of structural integrity.


Assuntos
Osso e Ossos/patologia , Osteoblastos/citologia , Receptor de Insulina/fisiologia , Animais , Fenômenos Biomecânicos , Tamanho Corporal , Feminino , Genótipo , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteogênese , Fenótipo , Receptor de Insulina/genética
19.
Bone ; 57(1): 36-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23886838

RESUMO

OBJECTIVE: Using a streptozotocin (STZ)-induced mouse model of type 1 diabetes (T1D), we have previously demonstrated that long-term diabetes inhibits regenerative bone formation during tibial distraction osteogenesis (DO) and perturbs skeletal integrity by decreasing cortical thickness, bone mineral density and bone's resistance to fracture. Because long-standing T1D is also associated with a deficiency of insulin-like growth factor I (IGF-I), we examined the effects of systemic IGF-I treatment on skeletal microarchitecture and strength, as well as on bone formation in diabetic mice. RESEARCH DESIGN AND METHODS: Streptozotocin-induced diabetic or control mice were treated with recombinant human IGF-I (rhIGF-I, 1.5mg/kg/day as subcutaneous infusion) or vehicle throughout a 14day DO procedure. Thereafter, trunk blood was assayed for glucose, insulin, rhIGF-I, mouse IGF-I and leptin. Bone formation in distracted tibiae was quantified. Effects on cortical bone strength and trabecular bone architecture were assessed by µCT analysis and three-point bend testing of contralateral femurs. RESULTS: New bone formation during DO was reduced in diabetic mice but significantly improved with rhIGF-I treatment. The contralateral femurs of diabetic mice demonstrated significant reductions in trabecular thickness, yield strength and peak force of cortical bone, which were improved with rhIGF-I treatment. rhIGF-I also reduced intracortical porosity in control mice. However, treatment with rhIGF-I did not normalize serum glucose, or correct concurrent deficiencies of insulin or leptin seen in diabetes. CONCLUSIONS: These findings demonstrate that despite persistent hyperglycemia, rhIGF-I promoted new bone formation and improved biomechanical properties of bone in a model of T1D, suggesting that it may be useful as a fracture preventative in this disease.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Fator de Crescimento Insulin-Like I/uso terapêutico , Animais , Hiperglicemia/tratamento farmacológico , Camundongos , Osteogênese/efeitos dos fármacos
20.
J Pediatr Psychol ; 38(6): 629-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23699750

RESUMO

OBJECTIVE: To adapt and pilot test a multicomponent motivational intervention that includes family-based contingency management (CM) for adolescents with poorly controlled type 1 diabetes. METHODS: A total of 17 adolescents, age 12-17 years (M = 14.8, SD = 1.5), with type 1 diabetes (duration M = 6.2 years, SD = 4.5) and mean HbA1c of 11.6% (SD = 2.5%) were enrolled. Adolescents and their parents received 14 weeks of motivational interviewing, clinic-based CM, and parent-directed CM that targeted increased blood glucose monitoring (BGM). RESULTS: Adolescents significantly increased their BGM (p < .001) and showed significantly improved HbA1c levels (glycemic control) from pre-to posttreatment (p < .0001). CONCLUSIONS: The magnitude of improvements in the frequency of BGM and glycemic control in adolescents with type 1 diabetes is encouraging and will be tested in a randomized controlled trial.


Assuntos
Automonitorização da Glicemia , Diabetes Mellitus Tipo 1/sangue , Hipoglicemiantes/uso terapêutico , Adesão à Medicação/psicologia , Entrevista Motivacional , Adolescente , Glicemia/análise , Criança , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/psicologia , Feminino , Humanos , Masculino , Projetos Piloto , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...